skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cabral, Matthew_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deviations of local structure and chemistry from the average crystalline unit cell are increasingly recognized to have a significant influence on the properties of many technologically important materials. Here, we present the vector pair correlation function (vPCF) as a new real-space crystallographic analysis method, which can be applied to atomic-resolution scanning transmission electron microscopy (STEM) images to quantify and analyze structural order/disorder correlations. Our STEM-based vPCFs have several advantages over radial PCFs and/or 3D pair distribution functions from x-ray total scattering: vPCFs explicitly retain crystallographic orientation information, are spatially resolved, can be applied directly on a sublattice basis, and are suitable for any material that can be imaged with STEM. To show the utility of our approach, we measure partial vPCFs in Ba5SmSn3Nb7O30 (BSSN), a tetragonal tungsten bronze (TTB) structured complex oxide. Many TTBs are known to be classical or relaxor ferroelectrics, and these properties have been correlated with the presence of superlattice ordering. BSSN, specifically, exhibits relaxor behavior and an incommensurate structural modulation. From the vPCF data, we observe that, of the cation sites, only the Ba (A2) sublattice is structurally modulated. We then infer the local modulation vector and reveal a marked anisotropy in its correlation length. Finally, short-range correlated polar displacements on the B2 cation sites are observed. This work introduces the vPCF as a powerful real-space crystallography technique, which enables direct, robust quantification of short-to-long range order on a sublattice-specific basis and is applicable to a wide range of complex material types. 
    more » « less
  2. Abstract Lead‐based relaxor ferroelectrics are characterized by outstanding piezoelectric and dielectric properties, making them useful in a wide range of applications. Despite the numerous models proposed to describe the relation between their nanoscale polar structure and the large properties, the multiple contributions to these properties are not yet revealed. Here, by combining atomistic and mesoscopic‐scale structural analyses with macroscopic piezoelectric and dielectric measurements across the (100–x)Pb(Mg1/3Nb2/3)O3–xPbTiO3(PMN–xPT) phase diagram, a direct link is established between the multiscale structure and the large nonlinear macroscopic response observed in the monoclinic PMN‐xPT compositions. The approach reveals a previously unrecognized softening effect, which is common to Pb‐based relaxor ferroelectrics and arises from the displacements of low‐angle nanodomain walls, facilitated by the nanoscale polar character and lattice strain disorder. This comprehensive comparative study points to the multiple, distinct mechanisms that are responsible for the large piezoelectric response in relaxor ferroelectrics. 
    more » « less